
JOURNAL OF COMPUTATIONAL PHYSICS 52, 39&413 (1983) 

Second-Order Fluid Particle Scheme 

A. NISHIGUCHI AND T. YARE 

Institute of Laser Engineering, Osaka University, 
Yamada-Oka, Suita, Osaka 565, Japan 

Received September 9, 1982; revised February 1, 1983 

A new momentum and energy conservative fluid particle scheme (SOAP) having a second- 
order accuracy in the advection is developed. The scheme can be used in a nonuniformly 
spaced and/or moving grid system. The required particle numbers and calculation time are 
substantially reduced with less noise and numerical viscosity. The scheme is successfully 
extended to polar coordinate system without the difficulty of numerical centrifugal force. 

I. INTR~OIJCTI~N 

At present, there are many techniques solving the fluid equations in the 
multidimensions. The representative methods are the Eulerian, Lagrangian and their 
mixed methods, and the Finite Element method. Each method has been used 
according to its applicabilities. 

The Eulerian formulation remains applicable, for a wide range of fluid distortions. 
The principal difficulty is that it tends to introduce false diffusions, for example, 
noticeable in the large gradient regions and so on. When an element of material 
enters a cell, its characteristics are uniformly mixed with those of all the others in the 
cell. In order to avoid the numerical diffusion, some special technique such as Flux- 
Corrected Transport (FCT) [l] is required. 

The Lagrangian approach [2, 31 has proved particularly useful for treating the 
system involving several fluids. The interfluid boundaries are always clearly 
delineated. A large number of strikingly successful calculations have been performed 
by several groups of workers. But it is limited to use with systems in which no large 
distortions of the fluid occur. In a finite-sized grid, various topological catastrophes 
can happen which reduce the further results to nonsense. 

Besides them, there are several methods to treat the fluid equations, for example, 
1CEDALE [4], MFE [5] and Particle-in-Cell (PIC) method [6]. Among them, the 
PIC method can treat large distortions without any difficulties although it is generally 
somewhat extravagant in the use of memory space in computing machine because it 
employs the double grid system. The attractive feature of the PIC method is no mass 
diffusion and the ability of treating large distortions of fluid. The main defects of the 
PIC method are numerical noise, viscosity and heat conduction. If the numerical 
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noise can be effectively reduced with fewer particles, the problems of memory 
capacity and calculation time can be considerably improved. 

For the countermeasure of these defects, GAP [7], PAL [8] and some recent work 
[9] employed the full particle method which is more Lagrangian than the PIC 
method. Due to the collisionless nature of particle motion, they need arificial relax- 
ation between the particle’s physical quantities and cell-wise quantities to sustain a 
fluid nature. These artificial relaxation coefficients are required for all quantities 
except mass and are problem-dependent when thermal conduction, heating or ion- 
electron temperature relaxation is added to energy equation [lo] and/or magnetic 
flux convection coupled with magnetic field diffusion analyzed in Ref. [9] is treated 
by the same method. 

This article proposes a new second-order accurate fluid particle (SOAP) scheme, 
which has the second-order accuracy in the treatment of advective term in space and 
the first-order accuracy in time. Our scheme is more Eulerian than the full particle 
method [7-91 and close to the original PIC method. In our scheme, only the 
particle’s mass and locations are stored in the particle’s memory, and momentum and 
total energy (internal energy and kinetic energy) are convected in a similar way as 
Harlow’s method but in a more accurate way. Because no relaxation coefficients are 
required to sustain a fluid nature and no extra memories in particle are required other 
than mass and locations, the extension of the scheme to a more complicated system 
[ 1 l] or a more general hyperbolic system is straightforward. Furthermore, 
momentum and total energy are conserved. 

In Section II, collisional quasiparticle methods are briefly reviewed and their 
advantages and defects are clarified. Section III provided a basic algorithm of our 
SOAP scheme. Test calculations of the scheme are given in Sections IV and V, with 
the extension of our scheme to the polar coordinate system described in Section V. 

II. BRIEF REVIEW OF COLLISIONAL QUASIPARTICLE METHODS 

The Particle-in-Cell method was developed by F. H. Harlow and others at Los 
Alamos in 1955 [6]. First, we review the original description of the method and point 
out the defects of it as an introduction to our new scheme described in the following 
sections. Although the method can be applied to a variety of hyperbolic equations, 
our discussions will be limited to the fluid dynamics described by the following 
equations: 

ap/at+v *pv’=o, 

apiqat + v * pi57 = -VP, 

apqat + v ’ pv'E = -V * pv’, 

(1) 

(2) 

(3) 

where p, v’, p and E are the density, velocity, pressure and specific total energy, 
respectively. The second terms in the left-hand side of Eqs. (l)-(3) represent the 
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advection by fluid bulk motion. In many cases, this effect is very important but 
occasionally causes numerical instabilities in finite difference calculations. In the PIC 
method, the fluid bulk motion is realized by means of fluid particles. Each particle 
represents the fluid element and moves in a Lagrangian fashion. On the contrary, the 
object space is divided into a system of cells as depicted in Fig. 1. The grid point is 
the center of the cell. Each cell is characterized by a set of variables describing the 
mean values of velocity, internal energy, density and pressure inside the cell. The 
calculation proceeds through a series of cycles of duration At”. Each cycle is further 
subdivided into two phases; the Eulerian and the Lagrangian phases. 

In the Eulerian phase, we neglect the advection terms and the required finite 
difference equations in the two-dimensional Cartesian formulation are those of 
momentum and energy; 

u’i,j- Uy,j 

p,“,j ApI 

_ 

- - & (P:!, I/Z,j - Pk 1lZ.j)~ 

V;j- Vy,j 
p,“,j AtPI = - + (PY,j+ 1/2 - PY,j- l/2), 

t’,j- If,j 

py?i AtI8 
tii+1/2,j-ui-11/2,j vi,j*1/2-ci,j-I/2 _ 

- -PY,j Ax 
+ (6) 

The specific internal energy I is given by 

I = E - (u2 + v2),‘2. 

Quantities labeled with integer-plus-one-half subscript are obtained as an average 
from the two adjacent cells. The superscript n represents the time cycle counting. The 
velocities distinguished by a bar mean the average between the old and tentative new 
values denoted by tilde. In the Eulerian phase only the cell-wise quantities are 
changed. 

In the Lagrangian phase, the particles are forced to move with the tilde velocity, 
where an effective velocity is calculated by an area-wise velocity weighting among the 
tilde velocities at the four nearest cell centers and the particle position, such as, 

where A,, A *, A, and A, are the fractional areas of overlap of a particle-centered cell 
onto the four adjacent cells (the areas are normalized as C A, = 1). With this 
effective velocity, the new position of the particle x?+’ is calculated to be 

-n+1 
XP = x; + pp At”. (8) 
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If a particle moves across a cell boundary, the particle mass, momentum and energy 
are simply added to the new cell and subtracted from the old cell. The energy and 
momentum are assigned to the particle only when it moves across a cell boundary. So 
those quantities are not stored in each particle’s memory. 

The successful running of numerous calculations has demonstrated many times 
that the PIC method is useful for the calculation of problems in fluid dynamics 
involving large distortions of the fluid. The method has been useful for a number of 
problems for which other methods have been hard to handle. But the PIC method has 
certain limitations and some defects as listed below. 

(i) The numerical noise caused by using the finite numbers of fluid particles. 
If many particles are employed in order to reduce the numerical noise, it wastefully 
requires much computer memory capacity and calculation time. 

(ii) The range of variation in density is limited by initial particle number in 
one cell, This is the direct source of the numerical noise as well. The continuous 
change of physical quantities is desirable. 

(iii) The numerical viscosity and thermal diffusion caused by the averaging 
effects in cells are the severe defects as the case may be. These arise from the 
treatment of the distributions of the velocity and internal energy in a cell. The 
internal energy distribution in mixed cells was fairly discussed, but the best treatment 
of them is not settled down. 

(iv) The spatial resolution is limited to a certain degree because of using the 
Eulerian grid. For best resolution, one must use numerous grids if fixed uniformly 
spaced grids are used. It is rather wasteful. 

To overcome these defects, some workers [7-9] have modified the original PIC 
method. In the PIC method, fluid quantities such as momentum and energy are stored 
on grids, and particles carry mass-weighted portions of these quantities from cell to 
cell. On the contrary, the later developments modify the PIC to fully represent a 
Lagrangian fluid and to use grids only for field calculations. In this form, they can 
suppress numerical noise and diffusions. But due to the collisionless nature of particle 
motion, they tend to produce local anomalies such as multistreaming instabilities 
and/or multitemperature problem. These effects are not intrinsic in original hyper- 
bolic equations. To suppress these effects and to sustain a fluid nature, they need 
artificial relaxations between particles’ physical quantities and cell-wise quantities. If 
the relaxation coefficients are poorly settled, local anomalies grow intolerably or 
numerical diffusions cause oversmoothing. The best selections of the relaxation coef- 
ficients are complicated because, for example, in the calculation of internal energy the 
relaxation coefficients should include the effects of fluid kinetics, thermal conduction, 
energy deposition and so on [lo]. Furthermore the problem becomes more 
complicated in the case of the convection of nonfluid quantities such as magnetic flux 
convection coupled with diffusion [9]. 

Fully Lagrangian fluid particle method needs much computer memory capacity 
when it is used in two- or three-dimensional problems and in a complicated problem 
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which includes convections of fluid, electron temperature, ion temperature, multicom- 
ponent of magnetic flux, nuclear fusion products, ions in various ionization stages 
[ 121 and so on. Furthermore, it is very hard to conserve both total momentum and 
energy in this method. 

In this article, we choose a different way from the fully Lagrangian particle 
method and prefer a more Eulerian way such as Harlow’s method. In our method, 
required memory capacity is much reduced because only the particle’s mass and 
locations are stored in the particle’s memory and we use finite-sized particles for 
reduction of noise. The difficulties of artificial relaxation coefftcients are not met and 
hence the extension to more general hyperbolic system is straightforward. The 
following sections are dedicated to the introduction of our new scheme. 

III. FLUID MACROPARTICLE CODE 

In this section, we describe our new macroparticle method in detail, which is based 
on the original PIC method. The cells and particles are similar to it. Before we start, 
we briefly discuss the method to overcome the defects of the PIC method mentioned 
in the previous section. 

The numerical noise caused by NGP (nearest-grid-point) procedure employed in 
the PIC method may be reduced by the area-weighting technique [ 131 but some 
modification is required before it is applied to the fluid PIC method. The full particle 
method [7-91, which means that all quantities are kept in the particle’s memory, may 
use the area-weighting technique without special care but the problem of local 
anomalies is still a subject of considerable debate. The finite-sized particle also allows 
a large density variation because the density is determined by the fractional area of a 
particle belonging to a cell. It should be noted that the variation, however, is 
sometimes fictitious because of an incompressible nature of finite-sized particle. In 
uniformly spaced grids, the correctly represented range of density is decided by initial 
particle numbers per cell and is not less than that of one particle. If the grids are 
nonuniformly spaced, the minimum density is much lower than that. 

Nonuniformly spaced grids also improve the resolution. Furthermore, it is possible 
to use moving grids for a local fine resolution because all physical quantities are 
temporarily stored within a finite-sized particle only when it moves. 

Having these in mind, let us start to describe the basic procedure of our scheme. In 
the Eulerian phase, neglecting the advection terms, we solve Eqs. (l)-(3). Taking 
account of the conservations, the following difference forms are adopted: 
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E”,,j -EF,j = _ (P”Qi+ 1,z.j - 
6 dtn 

dx,(Pnp)i-l/2,j 
n 
I 

_ (Pn8)i,j+ 1/Z - (PWi.j- l/Z 
AY; 

(11) 

Quantities labeled with integer-plus-one-half subscript are obtained as an inter- 
polation from the two adjacent cells. The interpolation of the products of pressure 
and velocity in Eq. (11) is defined to be 

(Pnu)i+ lf2.j = PiR+I/Z.j * ui+ l/Z,j, 

for the correspondence to the kinetic equations, Eqs. (9) and (10). Equations (9) and 
(10) rigorously conserve the momentum and Eq. (11) conserves the total energy. In 
this phase, no other specific problems occur. 

In the Lagrangian phase, some modifications are required for a reasonable 
accurate treatment. If the area-weighting method is applied to the scheme in a usual 
manner analogus to the NGP method, the momentum and the total energy of four 
adjacent cells are attached to the particles as shown in Fig. la. These quantities are 
redistributed uniformly within the particle. After it moves as shown in Fig. lb, these 
are repartitioned to new four adjacent cells. This process is expressed as 

for the case depicted in the figure. Here, U represents a conservative quantity during 
the advection. It is easily understood that the process is mistaken and produces the 
zeroth-order diffusion. Even when the particle does not move, that is, B, = A,, 

a b 

FIG. 1. Schematics of a finite-sized particle’s location (0) and the cell center (B) (a) before and 
(b) after the particle moves. In the tirst-order scheme (Eq. (12)), the cell boundary lines of fractional 
areas (Al, A2, A3, A4) are memorized during the particle motion, that is, the area B7 + B8 in (b) 
corresponds to A3 in (a), for example. 
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B3=A2,B7=A~,Bg=AqandB,=B,=B,=B,=B,=0, UNEW differsfrom UoL” 
because of the averaging procedure mentioned above. 

As the first candidate to overcome this diffusion, the particles’ inner boundary lines 
are temporarily memorized during the particle movement. In the example depicted in 
Fig. lb, the procedure can be expressed to be 

Although this method can conserve the total momentum, it only has the first-order 
accuracy in the space step and is equivalent to the NGP method using a large 
number of small point particles, which are uniformly distributed within the area of a 
macroparticle. This form can conserve the momentum and total energy. This area- 
weighting procedure removes the zeroth-order diffusion, but the first-order diffusion, 
which is the so-called numerical viscosity or numerical heat conduction, still remains. 
The effect is usually not crucial, except for the case where fluid velocity relative to 
Euler grid is greater than local sound speed and velocity gradient is relatively large. 
This phenomena may be understood by the following explanation, which, although it 
is not mathematically correct, is illustrative. Since the particle transports the 
momentum mp U, and total energy Qp, the internal energy S is calculated by S = 
C Qp - CC v4,)*/P C mp), where C means the sum of the particles in a cell. The 
inequality (C mp 24,)*/C nri, < 2 m,,ui = (real kinetic energy) tells us that the 
internal energy calculated by the above formula is always larger than the real internal 
energy S, z C Q,, - 2 m,ui/2. We may call this process as “numerical viscosity” 
since the kinetic energy is converted to the internal energy by an averaging process. 
The difference ] Q - Q,] may depend on the square of the difference of up among 
particles, because (a’ + b*)/2 - [(a + b)/2]* = [(a - b)/2]*. This idea forces us to 
put some spatial distribution of quantities within a particle. 

Although there are several methods to reduce the numerical viscosity, here we 
consider only the conservative Eulerian methods. These are, for example, to subtract 
it in a finite difference form [6] and to assume a distribution of quantities within a 
particle for more correct convection as illustrated above. The former is hardly 
extended to multidimensional simulations because the accurate evaluations of the 
effective numerical diffusion is difftcult, while the latter is more flexible because it 
tries to remove the origin of the numerical diffusions. The most simple distribution is 

u(G VI= {(“i+l,j+l - ui+l,j)(2V-a6r) + ui+~,j~(2t-60 

-{(“i,j+l-ui,j)(2r,6rl)+ ui,j)(2T-sY- I), (13) 

where the particle size is set to unity and the origin of the coordinate (c, r) is at the 
bottom left-hand corner of the particle in Fig. la. The physical quantities of four 
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parts after convection are easily obtained by integrating U([, q) over each new area in 
Fig. lb. Equation (13) preserves total amounts of physical quantities, such as 
momentum and energy, and if the particle does not move, no diffusion occurs. This is 
verified by integrating the above equation over each domain. For example, when the 
particle does not move, we integrate the equation over the area A, and obtain 

This method removes the first-order truncation error in the space step Ax and 
rigorously conserves the total integration of the quantities U such as momentum and 
energy over an above space. 

All these procedures are straightforwardly extended to a nonuniformly spaced grid 
system. If the arbitrarily spaced grid system is employed, the locations of particles in 
cells are only found with the comparison of the particles’ positions and all the cell 
boundaries’ positions. These operations are hard to accept. In order to simplify the 
operations, we employ a uniform subgrid system, whose spacing is 6x and Sy as 
shown in Fig. 2. The subgrid, to which a particle belongs, can be easily found by a 
usual method. Namely, if a particle has the position (x,,, y,), the number (IS, JS) of 
the subgrid is calculated with 

IS = INT(x,/Gx) + 1, 

JS = INT( y,/&) + 1. 

The cell, to which each subgrid belongs, is beforehand defined, that is, (IS, JS) is 
initially related to the cell number (i, j) for a fixed grid system or at each calculation 
step for a moving grid system. Consequently, the cell center coordinate (x,, yj) is 
given by 

i-l 

xi= c Ax,++: 
k=I 

III I 1 imaginary grid 

I l ri$yy i;r I grid 

Illill~lllillllllllllllllll s”bgrid hxiw IS ls+l 

FIG. 2. For a nonuniformly spaced grid system, the grid spacings are taken to be an integral times 
of the subgrid, which is uniformly spaced and is taken to be as small as possible for a smooth grid 
movement. The grid to which a particle belongs can be easily found through such a double procedure. 
The relation of the grid i to the subgrid IS can be expressed by some function IGRID[ZS], for example, 
IGRID(ZS] = i, 1GRIDIZ.S + 11 = i. 
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j-l 

Yj= 2 Ay,+%. 
k=I 

(15) 

The grid widths Ax, and Ay, are selected to the integral times of a small size 6x and 
6y, respectively, for the convenience of the calculation of particle’s location in the 
cell. In this method, grids move in a discrete manner, and hence 6x and Sy must be 
chosen as small as possible for a smoothly moving grid system. The grid motion is 
achieved by the following method. Initially we define “imaginary” grids whose 
arrangement is the same as that of real grids at initial time. The boundaries of the 
“imaginary” grids move with some velocities, which are assigned from outside, at 
every time step. If we specify the location of the boundary of the “imaginary” grid of 
grid i as Xi’” at some time, the number ZSilB defined by 

IS;” = INT(Xf’/Gx + 0.5) 

gives us the information of the grid location on the subgrid system. This relation of 
the grid to the subgrid IS can be expressed by some function IGRID [IS]. In the 
example depicted in Fig. 2, this function gives us IGRID[ZS] = i, 
IGRID[ZS + I] = i,..., etc. The grid width Axi can be calculated by 

Axi = {ZSfy , - ZS,!“} 6X. 

Furthermore, real grid-boundary XFB is given by 

xp” = zbyB 6x. 

The same definition is used in another direction y. This means that the real grid- 
boundary moves in a discrete manner, whose minimum increments are 6x and 6y, and 
hence they should be as small as possible for a smooth grid movement. It should be 
noted that the “imaginary” grids move smoothly and do not depend on 6x and Sy. In 
this paper, grids move in a specific way, as given by the examples in the following 
sections, but the optimization problem of grid velocity is not discussed here. 

In a nonuniform grid system, a particle size may be set to the minimum size of 
four adjacent cells. As the size of a particle changes in conjunction with the grid 
spacing, sometimes the fluid suffers a false compression or expansion if the grid 
spacings are poorly set up. There may be two possible methods to avoid the 
phenomena. One is to optimize the grid motion. The other is the particle generation 
and extinction. One of the procedures in the latter case is that the size of the particle 
is not determined from the grid spacings but from the fluid dynamics. The size of 
each particle is decided from the adjacent particles or is stored in the particle’s 
memory. If the particle size spreads over three or more grid widths, the particle is 
divided into two or more to avoid the spreading of the particle over many cells, 
otherwise the distribution method is hard to employ. Although the particle generation 
technique can be easily introduced into the code and some test runs produced 
favorable results, it is not employed in the test runs shown in the following sections, 
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in which our new scheme without particle generation is enough for the purpose. A 
new powerful scheme which includes the automated optimization of grid velocity and 
the particle generation will be discussed in another paper. 

IV. TEST RUNS 

Now we shall demonstrate the abilities of our scheme to the fluid dynamics. Some 
examples were shown in a previous note [ 141. Here we make a more detailed 
discussion about the nature of our code. In this section, the discussion is limited to a 
planar configuration and the following problems are investigated; the 1-D adiabatic 
expansion process, the 1-D shock wave propagation and the Rayleigh-Taylor 
instability. The next section is devoted to the problems in a polar coordinate system 
with a brief comment on the extension of our scheme. All calculations have been 
performed on the FACOM M-200 computer at the Institute of Plasma Physics, 
Nagoya University. 

A. Adiabatic Expansion 

The PIC method is usually not good in the expansion process, because the particle 
density rarefies in that case and numerical noise grows intolerably. One of the coun- 
termeasures for it is the cloud-in-cell technique [ 131. But it does not work well below 
the density, which is the minimum one determined by one particle. Usually the value 
is not sufftcient for many calculations. Our scheme makes it possible by using the 
area-weighting procedure in a nonuniformly spaced moving grid and, if necessary, by 
the particle generation, In the PIC method, the numerical viscosity exists even for an 
expansion phase. The numerical viscosity is effective in the region where the local 
fluid velocity u, relative to the grids is higher than the local sound speed, because the 
implicit numerical viscosity has a form of f~ 1 uR ] &,/ax dx. If the magnitude of uR 
is greater than the local sound speed, viscosity pressure is comparable to the static 
pressure of the fluid. Our second-order scheme, that is, the velocity distribution 
technique, can successfully reduce the effect as shown below. 

Let us show three example calculations for the adiabatic expansion: (1) the 
uniformly spaced fixed grid, (2) nonuniformly spaced fixed grid and (3) moving 
grids. In the first example, initially 20 particles per cell are loaded in uniform 20 
grids and the same spaced grids are placed in a vacuum region. In the second 
example, initially 5 particles per cell are loaded in uniform 20 grids and the 
nonuniformly spaced grids, whose spacings are stretched adjusting the expansion 
profile, are placed in a vacuum region. In the moving grid method, only two particles 
per cell are loaded and two grids are supplemented in a vacuum region. These results 
are shown in Fig. 3 with the analytical solution denoted by the solid line. In such a 
range of density variation, the three methods produce almost the same result. The 
rarefaction wave front is smeared because of the inaccuracy. So the propagation 
speed of the rarefaction wave is slightly higher than the sound speed around the wave 
front. In the other region, where the higher components of the Fourier series are much 
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X 

FIG. 3. Spatial profile of density in the adiabatic expansion process for y = 5/3. Here, W, A and 0 
are the results obtained by the first-order scheme with uniformly spaced grid, the second-order scheme 
with nonuniformly spaced grid and the moving grid scheme, respectively. 

smaller than the lower, a good agreement is obtained between the calculations and the 
analytic solution. The sonic point is located at p = 0.422 and hence the numerical 
viscosity is not remarkable for the density range shown in the figure. The viscous 
effect is clearly seen in the examples shown below. 

In Fig. 4, the p -p relations of the following three methods are compared. The 
filled rectangles are obtained making use of the nonuniformly spaced fixed grids and 
first-order repartition given by Eq. (12). A large density variation is realized but the 
p -p relation is intolerably detached from the adiabatic relation at a lower density. 
The triangles are obtained making use of the same grids and second-order repartition 
given by Eq. (13). The numerical viscosity is reduced and the p -p relation is 
tolerably improved. With the moving grid method, the fluid velocity relative to the 
grid can be suppressed much smaller than the sound speed even in much lower 
density. Then the adiabatic relation is maintained both for the first- and second-order 

FIG. 4. Comparison among the theoretical adiabatic relation (the solid line) and simulation results. 
where n , A and 0 are the results given by the first-order scheme in nonuniform fixed grid, the second- 
order scheme in nonuniform fixed grid and the first-order scheme in the moving grid, respectively. 
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repartition methods as shown by the circles in Fig. 4. In this case the moving velocity 
of the “imaginary” grid is 80% of the local fluid velocity and the subgrid spacing is 
one-twentieth of the initial grid spacing. These examples show us that the velocities of 
grid motion can be arbitrarily chosen to a certain degree. 

B. Reflected Shock Wave 

The second example is the production and propagation of a steady-state shock. The 
PIC method has treated many shock problems fairly well. Because our scheme 
reduces the intrinsic numerical viscosity, artificial viscosity is required to stabilize the 
calculation of shock wave. Even in the PIC method, the artificial viscosity of a form 
such as 

qa = -apC, au/ax Ax if au/ax < 0, 

=o otherwise, 
(16) 

is required for the reflected shock wave discussed below because the intrinsic 
numerical viscosity is proportional to the local fluid velocity relative to the grid and 
is small in the stagnation region, 

In our scheme, the artificial viscosity of a form 

4 = q,4 + 46 (17) 

is employed [ 151, where qe is the second-order or the von Neumann-type viscosity 
[161; 

qB = b/1(&/3x)~ Ax2 if au/ax < 0, 

=o otherwise. 
(18) 

In the full particle method, different techniques are used to stabilize the overshooting. 
In the GAP method, the artificial relaxation constant is set to unity around the shock 
front and the scheme becomes more diffusive there, such as the scheme given by 
Eq. (12’). On the other hand, Leboeuf et al. [9] have used the averaging of pressure 
over a few grids at the shock front, which also makes the scheme more diffusive. We 
can use similar techniques in our scheme but prefer a more explicit way. 

Let us describe the simulation results. Initially two particles per cell are loaded on 
a 200-cell system to produce a shock wave as shown in Fig. 5. The fluid initially 
moves with the velocity v0 towards the left boundary, which is the rigid wall. The 
figure shows the time development of the density profile. Except for a few boundary 
cells, good agreement between numerical and analytic calculation is observed. The 
maximum error of the density is about 1% and pressure is 0.2% in this case. The 
shock front is smeared as usual and the width is about four grid spacings in case of a 
small overshooting as shown in the figure. In this example, we adopt a = 1.2 and 
b = 1.6 for the artificial viscosity given by Eq. (17). It should be noted that such a 
smooth profile in Fig. 5 can be obtained even with a few particles per cell, only two 
particles in this case. 
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0 
0 60 

x 

FIG. 5. Time evolution of the spatial density profile in the reflected shock wave. The fluid flows in 
from the right-hand side and the left boundary is a rigid wall. 

Let us briefly discuss the selection of the artificial viscosity. To suppress the long- 
wavelength overshooting and numerical oscillation and minimize the width of the 
shock front, it is preferable to use the viscosity of lower order such as Eq. (16). But 
in the strong shock, the first-order viscosity such as Eq. (16) is small at the shock 
front. If only the viscosity of Eq. (16) is used, the coefficient should be widely 
changed adjusting to the strength of the shock wave for the best calculation. On the 
contrary, if only the second-order viscosity such as Eq. (18) is used for the 
suppression of the long-wavelength oscillations, the width of the shock front becomes 
very large, about 7-10 grid spacings. The accuracy of the Rankine-Hugoniot relation 
weakly depends on the species of the viscosity in our calculations. From the above 
reason, we employ a linear combination of the quadratic (qB) and linear (qA) 
viscosity. 

C. Rayleigh-Taylor Instability 

The third example is the Rayleigh-Taylor instability [ 17, 181. A heavy fluid is 
superposed over a light fluid in a gravitational field. The initial perturbation is of the 
type V . v’= 0; 

u = u. sin(kx) * (2H( y) - 1) * exp(-k 1 y]), 

v = u. cos(kx) * exp(-k 1 y]), 

where v’ is the fluid velocity, k the wavenumber, the initial interface coincides with the 
origin of the vertical axis (y = 0) and 

H(Y) = 1, Y > 0, 

= 0, y < 0. 



a 

FIG. 6. Particle plots and grid arrangement at yTf = (a) 1.92, (b) 3.21 and (c) 4.01. The second- 
order scheme is employed, the initial velocity is q,/C, = 8.2 x 10-j, and the density ratio of two super- 
posed fluid is 10. 
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Then, the amplitude < of the surface wave evolves according to 

< = ur,/yT sinh(y, t) cos(kx). (19) 

Here, the linear growth rate yT of R-T instability of the invicid incompressible fluid 
is @ and a is the Atwood number. At an early state (yT t < l), Eq. (19) reduces to 

( = u. t cos(kx) 

and the amplitude grows only with an initial velocity. Let us call this stage the 
“ballistic phase.” When yTt > 1, Eq. (19) leads us to a so-called “linear phase”; 

(= u0/(2y,) eyT’ cos(kx). 

When the amplitude grows large enough and kr - 1 is reached, Eq. (19) is no longer 
valid and the “nonlinear phase” sets in. Because a tine grid spacing is required for the 
description of initial growth, partially nonuniformly spaced grids are preferred. The 
initial behavior sometimes affects the nonlinear growth as shown later on. Some 
calculations [ 181 of the R-T instability employ a relatively large initial velocity and 
hence the nonlinear phase sets in around or t - 1, that is, the nonlinear phase directly 
begins from the ballistic phase and the linear phase is not clearly observed. 

Now let us discuss simulation results. Figure 6 shows the time evolution of 
instability, where the density ratio of two superposed fluids is 10 and the magnitude 
of the initial perturbation u,,/Csa is set to 8.2 x 10e3, where C,, is the sound speed at 

I I 1 I 

1 2 3 4 

i =Ft 

FIG. 7. Time evolution of the surface perturbation amplitude 5 for uO/C, = 8.2 x 10-j (0) and 
+,/C, = 3.3 x 10-I (M). The solid line shows the theoretical prediction in the former. 
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FIG. 8. Comparison of the growth rate between the theory and simulation for various grid spacings 
in the horizontal direction. The grid numbers in a half wavelength of perturbation are denoted by N. The 
data seem to be scaled as N-* in the second-order scheme. 

the top of the lower light fluid. In this case, the second-order scheme is employed 
with the moving 24 grids in the vertical direction and uniformly spaced fixed grids in 
the horizontal direction. The grids are forced to move adjusting to the amplitude of 
the surface instability. The time evolution of the amplitude is depicted in Fig. 7 and 
compared with the linear theory Eq. (19) denoted by the solid line. The ballistic, 
linear and nonlinear phases are clearly demonstrated. Because the grid .moves in the 
vertical direction and its spacing is fine enough for the initial stage, the discrepancy 
between the theory and simulation in the figure mainly comes from the coarseness of 
the grid spacing in the horizontal direction. The linear growth rate yS in the 
simulation is compared with yT for various grid spacings in the horizontal direction 
and is depicted in Fig. 8. The result seems to be scaled as N-*, where N is the grid 

FIG. 9. Calculation of the same kind as in Fig. 8 for the first-order scheme, where the data seem to 
be scaled as N-l. 
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FIG. 10. Comparison of the profile in nonlinear phase. (a) The first-order scheme, q,/C, = 
8.2 x lo-‘, yTf = 4.01. (b) The second-order scheme, uJC, = 3.3 x lo-‘, y,f = 0.48. These figures are 
in the same phase as in Fig. 6c, which is obtained by the second-order scheme and u$C, = 8.2 X 10 - ‘. 
The numerical viscosity stabilizes the K-H instability (Fig. 10a). For a large initial perturbation, there 
is no time for the K-H instability to grow (Fig. lob). 

numbers in a half wavelength of perturbation, but yS does not tend to yT for N-* -+ 0. 
This may come from the inaccuracy of higher-order or finite grid spacing in the 
vertical direction and so forth. 

For a comparison, the same test runs are repeated for the first-order scheme given 
by Eq. (12). In contrast to the second-order scheme, the result may be scaled as N-’ 
as shown in Fig. 9. This is a stimulating result. As it is shown, the second-order 
scheme can be used with less grids than the first-order scheme. 

The difference between both schemes can be clearly seen in the nonlinear phase. In 
Fig 6, a mushroom-like structure is produced due to the Kelvin-Helmholz (K-H) 
instability [ 191. On the contrary, it is not observed for the first-order scheme as 
shown in Fig. 10a. This means that the K-H instability is stabilized due to the 
numerical viscosity in the first-order scheme. 

Before closing this section, we should comment on the initial velocity u0 and its 
effects. Because the mushroom-like structure comes from the K-H instability, it needs 
a time to grow. If the initial velocity is large, the nonlinear phases directly begin from 
the ballistic phases as shown in Fig. 7 and the time to reach some amplitude becomes 
too short for the K-H instability to grow. This is clearly seen by comparing the 
results given by Fig. lob, where a relatively large initial velocity is used, with the 
structure given by Fig. 6c. This structure in Fig. lob is similar to that given by Daly 
et al. [ 181, who employed a relatively large initial velocity. From the result, we 
should note that the initial behavior often affects the nonlinear phase. 



SECOND-ORDERFLUID PARTICLE SCHEME 407 

FIG. 11. (a) Schematics of the grid arrangement in polar coordinate system. The figure is 
rotationally symmetric around Z-axis. In a finite time step, the particle moves straightforwardly in 
Cartesian coordinate (solid arrow) and moves curvedly in polar coordinate (dashed arrow). This is an 
origin of artificial centrifugal force. (b) Projected cell width in R - Z plane for the pressure work 
calculation. 

V. EXTENSION TO POLAR COORDINATE SYSTEM 

There exist many situations where the polar coordinate system is useful for a 
description of the fluid dynamics. The main problems, when the particle code is 
extended to the polar coordinate system, are the fictitious accelerations, for example, 
centrifugal or Coriolis acceleration, which originate from the curvilinear coordinate. 
This is schematically shown in Fig. 11, which is rotationally symmetric around the 
vertical axis. When a particle has a velocity V, only in the O-direction and the 
particle location is advanced according to &!I/& = VJr, the location differs from that 
calculated by using d?/dt = ii in the Cartesian coordinate because of the finite time 
step At. A simple way to reduce the effect is to push the particle in the Cartesian 
coordinate (R -Z). For this purpose, the velocity components (u, u) in R - Z 
coordinate had better be calculated rather than (V,, V,) even in the Eulerian phase. 
Projecting the momentum equations to the R - Z plane, we obtain the following finite 
difference equations: 

W,j 
lii,j - Uf,j 

At” 
= -RY,jZY i,j(Pf+ 1p.j - PI- l/2,./) 

+ Ri’,jZi i,j(Pi’,j+ 112 - Pi’,j- l/2)3 (20) 

MYJ 
U;j - VF,j 

At” 
= -RY,jRY i,j(PY+1/2,j - PY- I/*,,) 

where Z,, Z,, R, and R, are the effective length as shown in Fig. 11 and M is the 
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total mass within a cell. This form can maintain the spherical symmetry. Associated 
with the energy equation, the integration over the volume of each cell gives us 

&j- Qh = -[S;+*,2,j(pnVr)i+,,2,j- s;-,,*,j(p”v).- 
At” r 1 ll2.j 1 

- lsy,j+ l/*(PnVO)i,j+ 112 - s?j- I12(PnvO)i.j- I/2 13 (22) 

V, = u sin 0 + v cos 8, V, = --u cos 8 + v sin 0, 

where Q is the total energy of the cell and S is the surface area of each cell. This 
form can rigorously conserve the total energy. The basic calculating sequences are 
the same as in the case of the rectangular cell. 

In the Lagrangian phase, the fluid particles are transported in the R - Z plane. The 
new particle position (R z’ I, Z;’ ‘) is calculated by 

R ;+‘=R;+u,At”, (23) 

Z;+‘=R;+v,At”, (24) 

where (Rz, Z;) are the old particle position and up and up are the R, Z components 
of the particle velocity. Although particles move in the R -Z plane, the area- 
weighting procedure should be done in the r - 6’ plane. For this purpose, we must 
transform the position (R;+ ‘, Z:’ ‘) into (rz+ ‘, ,:‘I) using the inverse 
trigonometrical function. The inverse trigonometrical function requires much 
computation time which corresponds to a half of that of other parts of the particle 
transport. In our situation, this extra computation time is not crucial because other 
parts of the code, multigroup hot electron and radiation transport, heat conduction 
affected by magnetic field and so on [ 121, require much more computation time than 
does particle transport. The area-weighting should be carried out in the polar coor- 
dinate to make the transformations of the physical quantities between particle and 
cell easier, and to avoid fictitious fluxes. It should be emphasized that the mass 
distribution within a particle is uniform, namely, the cloud-in-cell procedure in the 
polar coordinate is not volume-weighting but cross-sectional-area-weighting of mass 
in order for the mass distribution in a particle not to change through a calculation. 
The fraction of mass partitioned from particle to cell and the contrary is proportional 
to each cross-sectional area normalized by I and 0, that is, the cross-sectional area of 
an imaginary “rectangular” cell in the r - c9 plane. Accordingly, our area-weighting 
procedure in the polar coordinate is the same as that of the rectangular cells. The 
reason for this procedure is obvious. For simplicity, let us imagine that the fluid 
converges to the center with uniform velocity and a particle located at a cell center 
moves by a distance, which is half the length of cell in the r-direction. In our area- 
weighting, the change of mass distribution is half of its mass because the two parts of 
the shaded region in Fig. 12 have equal masses. On the contrary, in volume-weighting 
or real area-weighting, the two parts have different masses, because the volume and 
the real area change proportional to r2 and r, respectively. So the mass ratios of two 
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FIG. 12. Mass distribution of particle in the polar coordinate (a) before and (b) after transport. The 
particle moves in the r-direction with uniform velocity in this case. The oblique line cuts the length of 
the particle in half in the r-direction. 

parts, the shaded and not shaded parts, are different in the two phases Fig. 12a 
and b. The ratio in Fig. 12a is less than that in Fig. 12b. This produces a fictitious 
mass flux toward the r-direction. In our area-weighting procedure, it is removed. 

Associated with the distribution of the physical quantities in our second-order 
scheme, the same procedure as in Eq. (13) can be used with (<, v) being the particle 
coordinates in an imaginary “rectangular” r - t? plane as discussed above. 

In the rest of this section, we show two example calculations; the imploding shock 
wave and the converging shock instability. 

A. Imploding Shock Wave 

A spherically symmetric stong shock wave travels towards the center of symmetry 
through a fluid having uniform initial density pO. When the shock wave is strong 
enough, the motion becomes self-similar [20] and the time evolution of the shock 
locus can be analytically calculated to be 

R = R,(l - t/Q”, (25) 

where R, is the initial radius, t, the collapse time and a the similarity exponent. In 
our calculation, the shock wave is generated by an outer high-pressure fluid, which 
encircles the lower-pressure fluid of uniform density pO. All the fluid is initially at 
rest. The ratio of the two pressures in 5.3. Uniform fixed 90 or moving 30 grids in the 
radial direction and uniform fixed 5 grids in the azimuthal direction are used. Initially 
two particles per cell are loaded. The results are shown in Fig. 13. Here, the circles 
show the results obtained by moving grids or the second-order scheme (Eq. (13)) 
with fixed grids. The squares show the results obained by the first-order scheme 
(Eq. (12)) with fixed grids. In the case of moving grids, imaginary radial grids move 
with the local fluid velocity and the interval of the subgrids is l/10 of the initial 
interval of the grid. The solid line denotes the analytical solution given by Eq. (25). 
The error bars in the figure imply the uncertainty of the collapse time. As in the 
previous section, the moving grid method or the second-order scheme gives good 
results. But in the first-order scheme, the numerical viscosity causes the lag of the 
shock propagation and hence the shock wave collapses late by 8% of the collapse 
time of other methods. 

5X1/52/2-13 
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FIG. 13. Time evolution of shock locus in the converging shock wave. The second-order scheme 
with uniformly spaced fixed grid 90 x 5 (r x 8) and the first-order scheme with moving grid 30 x 5 
produce good results (a). On the other hand, the first-order scheme with uniformly spaced fixed grid 
90 x 5 shows the lag of the shock propagation (m). 

B. Converging Shock Instability 

As, pointed out by Butler [21], the converging shock wave is unstable. If the shock 
front radius is perturbed from the average radius R by an amount C, the front vibrates 
and the relative amplitude C/R grows according to 122, 231 

k-R- (At2)/(2A.)fi(At2)pll 
, 

P= 
[4/l/(1+ 1) - (1 + 2)2] “2 

2(L+2) ’ (26) 

where y is the specific heat ratio, 1 the mode number of the perturbation. In the test 
calculation the shock wave is produced by the same method as in Section V.A, but 
the interface of the two fluids is initially perturbed such as R = R, + &,P,(cos B), 
where P,(cos 0) is the Legendre function of mode 8. The time evolution of the shock 
front is depicted in Fig. 14. The amplitude oscillation and growth are clearly seen in 
Fig. 15, which shows the evolution of the relative amplitude C/R, where the average 
radius R of the shock front is used instead of time. In this case, y = 513, I = 8 and 
hence A = 4.44 and Eq. (26) reduces to 

c/R -R -I?.‘=~ cos[3.96 ln(R/R,)J. (27) 
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FIG. 14. Time evolution of the 2-D shock locus. The second-order scheme with uniformly spaced 
90 x 40 grid is employed. 

Therefore, the perturbation amplitude tends to zero at RJR,, = 0.673, 0.3045, ---. 
The computed results show a good agreement with the linear analysis as for the 
frequency of the oscillation as shown in Fig. 15. But the growth rate does not 
coincide with the linear analysis. This may be due to the nonlinearity because C/R is 
more than 10% at the second peak in this case. 

Let us examine the effects of the numerical viscosity and the grid spacing in the 
azimuthal direction. In the radial direction, the uniformly spaced fixed 90 grids are 
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FIG. 15. Evolution of shock front perturbation in the first- and second-order schemes with uniformly 
spaced fixed grid (a) 90 x 40, (b) 90 X 30 and (c) 90 X 20. The period of amplitude oscillation depends 
on the grid coarseness, The solid lines denote the theoretical prediction of amplitude growth. 
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used in all calculations described below. As for the azimuthal direction, the test runs 
of the same kind are repeated with the uniformly spaced fixed 20, 30 and 40 grids 
both for the first- and the second-order schemes. Initially four particles per cell are 
loaded. The first nodal point, which is predicted to be c/R = 0.673 by the linear 
theory, is compared among the computed results. The fewer the grids, the longer the 
oscillation period is. 

Lastly, we should note that the oscillation characteristics have no difference 
regardless of the scheme, such as the first-order, the second-order or the moving grid 
methods, employed. The nodal points appear at almost the same radius in any 
method. The points mainly depend on the grid coarseness in the azimuthal direction. 
It should be noted, however, that the time evolution of the average radius R has 
different characteristics as pointed out in Section V.A. 

VI. SUMMARY 

A new fluid particle code (SOAP) is developed. The numerical noise is suppressed, 
and the required particle number for calculations and the calculation time are 
substantially reduced. Due to the second-order accuracy in the advection, the 
numerical viscosity in the first order is removed. The scheme is different from a 
Lagrangian full particle method and tries to improve the accuracy of the advective 
term in a more Eulerian way. The variable spaced grids and moving grids improve 
the range of the variations of the physical quantities, the local tine resolution and the 
accuracy of the solutions. 

An extension to the polar coordinate system is successfully done without the 
numerical centrifugal force, although the treatment of the pole at the center may be a 
subject of considerable debate. 

There are many problems remaining for further improvement: the automated 
optimization of grid movement, the demonstration of the particle generation and 
extinction, the treatment of the reflection point, such as the center of the polar coor- 
dinate, the automatic operation of a troublesome initial setup of the particle and 
optimal grid spacings, especially in a nonuniform grid system, and so forth. 
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